Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4481, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491352

RESUMO

Inflammation in response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection drives severity of coronavirus disease 2019 (COVID-19) and is influenced by host genetics. To understand mechanisms of inflammation, animal models that reflect genetic diversity and clinical outcomes observed in humans are needed. We report a mouse panel comprising the genetically diverse Collaborative Cross (CC) founder strains crossed to human ACE2 transgenic mice (K18-hACE2) that confers susceptibility to SARS-CoV-2. Infection of CC x K18-hACE2 resulted in a spectrum of survival, viral replication kinetics, and immune profiles. Importantly, in contrast to the K18-hACE2 model, early type I interferon (IFN-I) and regulated proinflammatory responses were required for control of SARS-CoV-2 replication in PWK x K18-hACE2 mice that were highly resistant to disease. Thus, virus dynamics and inflammation observed in COVID-19 can be modeled in diverse mouse strains that provide a genetically tractable platform for understanding anti-coronavirus immunity.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , Camundongos , Animais , Citocinas , SARS-CoV-2 , Camundongos Transgênicos , Inflamação/genética , Modelos Animais de Doenças , Pulmão
2.
J Leukoc Biol ; 114(1): 42-52, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36992528

RESUMO

Neutrophils represent a first line of defense against a wide variety of microbial pathogens. Transduction with an estrogen receptor-Hoxb8 transcription factor fusion construct conditionally immortalizes myeloid progenitor cells (NeutPro) capable of differentiation into neutrophils. This system has been very useful for generating large numbers of murine neutrophils for in vitro and in vivo studies. However, some questions remain as to how closely neutrophils derived from these immortalized progenitors reflect primary neutrophils. Here we describe our experience with NeutPro-derived neutrophils as it relates to our studies of Yersinia pestis pathogenesis. NeutPro neutrophils have circular or multilobed nuclei, similar to primary bone marrow neutrophils. Differentiation of neutrophils from NeutPro cells leads to increased expression of CD11b, GR1, CD62L, and Ly6G. However, the NeutPro neutrophils expressed lower levels of Ly6G than bone marrow neutrophils. NeutPro neutrophils produced reactive oxygen species at slightly lower levels than bone marrow neutrophils, and the 2 cell types phagocytosed and killed Y. pestis in vitro to a similar degree. To further demonstrate their utility, we used a nonviral method for nuclear delivery of CRISPR/Cas9 guide RNA complexes to delete genes of interest in NeutPro cells. In summary, we have found these cells to be morphologically and functionally equivalent to primary neutrophils and useful for in vitro assays related to studies of bacterial pathogenesis.


Assuntos
Proteínas de Homeodomínio , Neutrófilos , Camundongos , Animais , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Neutrófilos/metabolismo , Receptores de Estrogênio/metabolismo , Sistemas CRISPR-Cas , Diferenciação Celular , Células Progenitoras Mieloides
3.
bioRxiv ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35233576

RESUMO

Inflammation in response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection drives severity of coronavirus disease 2019 (COVID-19) and is influenced by host genetics. To understand mechanisms of inflammation, animal models that reflect genetic diversity and clinical outcomes observed in humans are needed. We report a mouse panel comprising the genetically diverse Collaborative Cross (CC) founder strains crossed to human ACE2 transgenic mice (K18-hACE2) that confers susceptibility to SARS-CoV-2. Infection of CC x K18- hACE2 resulted in a spectrum of survival, viral replication kinetics, and immune profiles. Importantly, in contrast to the K18-hACE2 model, early type I interferon (IFN-I) and regulated proinflammatory responses were required for control of SARS-CoV-2 replication in PWK x K18-hACE2 mice that were highly resistant to disease. Thus, virus dynamics and inflammation observed in COVID-19 can be modeled in diverse mouse strains that provide a genetically tractable platform for understanding anti-coronavirus immunity.

4.
Infect Immun ; 89(1)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33077628

RESUMO

Bubonic plague results when Yersinia pestis is deposited in the skin via the bite of an infected flea. Bacteria then traffic to the draining lymph node (dLN) where they replicate to large numbers. Without treatment, this infection can result in highly fatal septicemia. Several plague vaccine candidates are currently at various stages of development, but no licensed vaccine is available in the United States. Though polyclonal and monoclonal antibodies (Ab) can provide complete protection against bubonic plague in animal models, the mechanisms responsible for this antibody-mediated immunity (AMI) to Y. pestis remain poorly understood. Here, we examine the effects of Ab opsonization on Y. pestis interactions with phagocytes in vitro and in vivo Opsonization of Y. pestis with polyclonal antiserum modestly increased phagocytosis/killing by an oxidative burst of murine neutrophils in vitro Intravital microscopy (IVM) showed increased association of Ab-opsonized Y. pestis with neutrophils in the dermis in a mouse model of bubonic plague. IVM of popliteal LNs after intradermal (i.d.) injection of bacteria in the footpad revealed increased Y. pestis-neutrophil interactions and increased neutrophil crawling and extravasation in response to Ab-opsonized bacteria. Thus, despite only having a modest effect in in vitro assays, opsonizing Ab had a dramatic effect in vivo on Y. pestis-neutrophil interactions in the dermis and dLN very early after infection. These data shed new light on the importance of neutrophils in AMI to Y. pestis and may provide a new correlate of protection for evaluation of plague vaccine candidates.


Assuntos
Anticorpos Antibacterianos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peste/etiologia , Peste/patologia , Yersinia pestis/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Imunidade Inata , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/patologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Pele/imunologia , Pele/metabolismo , Pele/microbiologia , Pele/patologia , Sistemas de Secreção Tipo III/imunologia , Sistemas de Secreção Tipo III/metabolismo
5.
Methods Mol Biol ; 2010: 57-68, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31177431

RESUMO

The technique known as intravital microscopy (IVM), when used in conjunction with transgenic mice expressing fluorescent proteins in various cell populations, is a powerful tool with the potential to provide new insights into host-pathogen interactions in infectious disease pathogenesis in vivo. Yersinia pestis, the causative agent of plague, is typically deposited in a host's skin during feeding of an infected flea. IVM has been used to characterize the innate immune response to Y. pestis in the skin and identify differences between the responses to needle-inoculated and flea-transmitted bacteria that would have been difficult, if not impossible, to detect by other means. Here we describe techniques used to image the neutrophil response to flea-transmitted Y. pestis in the dermis of live mice using conventional confocal microscopy.


Assuntos
Derme/imunologia , Imunidade Inata , Insetos Vetores/microbiologia , Peste/imunologia , Sifonápteros/microbiologia , Yersinia pestis/imunologia , Animais , Derme/microbiologia , Modelos Animais de Doenças , Microscopia Intravital/métodos , Camundongos , Microscopia Confocal/métodos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Peste/microbiologia , Peste/transmissão
6.
Artigo em Inglês | MEDLINE | ID: mdl-28848716

RESUMO

Yersinia pestis is a gram-negative, zoonotic, bacterial pathogen, and the causative agent of plague. The bubonic form of plague occurs subsequent to deposition of bacteria in the skin by the bite of an infected flea. Neutrophils are recruited to the site of infection within the first few hours and interactions between neutrophils and Y. pestis have been demonstrated in vivo. In contrast to macrophages, neutrophils have been considered non-permissive to Y. pestis intracellular survival. Several studies have shown killing of the vast majority of Y. pestis ingested by human neutrophils. However, survival of 10-15% of Y. pestis after phagocytosis by neutrophils is consistently observed. Furthermore, these surviving bacteria eventually replicate within and escape from the neutrophils. We set out to further characterize the interactions between Y. pestis and human neutrophils by (1) determining the effects of known Y. pestis virulence factors on bacterial survival after uptake by neutrophils, (2) examining the mechanisms employed by the neutrophil to kill the majority of intracellular Y. pestis, (3) determining the activation phenotype of Y. pestis-infected neutrophils, and (4) characterizing the Y. pestis-containing phagosome in neutrophils. We infected human neutrophils in vitro with Y. pestis and assayed bacterial survival and uptake. Deletion of the caf1 gene responsible for F1 capsule production resulted in significantly increased uptake of Y. pestis. Surprisingly, while the two-component regulator PhoPQ system is important for survival of Y. pestis within neutrophils, pre-induction of this system prior to infection did not increase bacterial survival. We used an IPTG-inducible mCherry construct to distinguish viable from non-viable intracellular bacteria and determined the association of the Y. pestis-containing phagosome with neutrophil NADPH-oxidase and markers of primary, secondary and tertiary granules. Additionally, we show that inhibition of reactive oxygen species (ROS) production or Src family kinases increased survival of intracellular bacteria indicating that both ROS and granule-phagosome fusion contribute to neutrophil killing of Y. pestis. The data presented here further our understanding of the Y. pestis neutrophil interactions and suggest the existence of still unknown virulence factors involved in Y. pestis survival within neutrophils.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Neutrófilos/microbiologia , Peste/imunologia , Peste/microbiologia , Yersinia pestis/patogenicidade , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Humanos , Macrófagos/microbiologia , Fagocitose , Fagossomos/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Virulência/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
7.
PLoS One ; 12(3): e0173528, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278296

RESUMO

Published data show that murine bone marrow-derived macrophages (BMDM) restrict growth of avirulent phase II, but not virulent phase I, Coxiella burnetii. Growth restriction of phase II bacteria is thought to result from potentiated recognition of pathogen-associated molecular patterns, which leads to production of inhibitory effector molecules. Past studies have used conditioned medium from L-929 murine fibroblasts as a source of macrophage-colony stimulating factor (M-CSF) to promote differentiation of bone marrow-derived myeloid precursors into macrophages. However, uncharacterized components of conditioned medium, such as variable amounts of type I interferons, can affect macrophage activation status and their permissiveness for infection. In the current study, we show that the C. burnetii Nine Mile phase II (NMII) strain grows robustly in primary macrophages from C57BL/6J mice when bone marrow cells are differentiated with recombinant murine M-CSF (rmM-CSF). Bacteria were readily internalized by BMDM, and replicated within degradative, LAMP1-positive vacuoles to achieve roughly 3 logs of growth over 6 days. Uninfected BMDM did not appreciably express CD38 or Egr2, markers of classically (M1) and alternatively (M2) activated macrophages, respectively, nor did infection change the lack of polarization. In accordance with an M0 phenotype, infected BMDM produced moderate amounts of TNF and nitric oxide. Similar NMII growth results were obtained using C57BL/6J myeloid progenitors immortalized with an estrogen-regulated Hoxb8 (ER-Hoxb8) oncogene. To demonstrate the utility of the ER-Hoxb8 system, myeloid progenitors from natural resistance-associated macrophage protein 1 (Nramp1) C57BL/6J knock-in mice were transduced with ER-Hoxb8, and macrophages were derived from immortalized progenitors using rmM-CSF and infected with NMII. No difference in growth was observed when compared to macrophages from wild type mice, indicating depletion of metal ions by the Nramp1 transporter does not negatively impact NMII growth. Results with NMII were recapitulated in primary macrophages where C57BL/6J Nramp1+ BMDM efficiently killed Salmonella enterica serovar Typhimurium. M-CSF differentiated murine macrophages from bone marrow and conditional ER-Hoxb8 myeloid progenitors will be useful ex vivo models for studying Coxiella-macrophage interactions.


Assuntos
Medula Óssea/microbiologia , Coxiella burnetii/crescimento & desenvolvimento , Macrófagos/microbiologia , Febre Q/microbiologia , Animais , Medula Óssea/metabolismo , Células Cultivadas , Fatores Estimuladores de Colônias/metabolismo , Coxiella burnetii/patogenicidade , Feminino , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Febre Q/metabolismo , Febre Q/patologia , Fator de Necrose Tumoral alfa/metabolismo
8.
Microbes Infect ; 18(1): 21-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26361732

RESUMO

Polymorphonuclear leukocytes, in addition to their direct bactericidal activities, produce cytokines involved in the activation and regulation of the innate and adaptive immune response to infection. In this study we evaluated the cytokine response of human PMNs following incubation with the pathogenic Yersinia species. Yersinia pestis strains with the pCD1 virulence plasmid, which encodes cytotoxic Yop proteins that are translocated into host cells, stimulated little or no cytokine production compared to pCD1-negative strains. In particular, PMNs incubated with pCD1-negative Y. pestis secreted 1000-fold higher levels of interleukin-8 (IL-8 or CXCL8), a proinflammatory chemokine important for PMN recruitment and activation. Deletion of yopE, -H, -T, -M or ypkA had no effect on pCD1-dependent inhibition, whereas deletion of yopJ resulted in significantly increased IL-8 production. Like Y. pestis, the enteropathogenic Yersinia species inhibited IL-8 secretion by PMNs, and strains lacking the virulence plasmid induced high levels of IL-8. Our results show that virulence plasmid-encoded effector Yops, particularly YopJ, prevent IL-8 secretion by human PMNs. Suppression of the chemotactic IL-8 response by Y. pestis may contribute to the delayed PMN recruitment to the infected lymph node that typifies bubonic plague.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Interleucina-8/antagonistas & inibidores , Interleucina-8/metabolismo , Neutrófilos/imunologia , Neutrófilos/microbiologia , Yersinia pestis/patogenicidade , Proteínas de Bactérias/genética , Deleção de Genes , Humanos , Plasmídeos , Fatores de Virulência , Yersinia pestis/genética , Yersinia pestis/imunologia
9.
PLoS Pathog ; 11(3): e1004734, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25781984

RESUMO

Yersinia pestis, the causative agent of plague, is typically transmitted by the bite of an infected flea. Many aspects of mammalian innate immune response early after Y. pestis infection remain poorly understood. A previous study by our lab showed that neutrophils are the most prominent cell type recruited to the injection site after intradermal needle inoculation of Y. pestis, suggesting that neutrophil interactions with Y. pestis may be important in bubonic plague pathogenesis. In the present study, we developed new tools allowing for intravital microscopy of Y. pestis in the dermis of an infected mouse after transmission by its natural route of infection, the bite of an infected flea. We found that uninfected flea bites typically induced minimal neutrophil recruitment. The magnitude of neutrophil response to flea-transmitted Y. pestis varied considerably and appeared to correspond to the number of bacteria deposited at the bite site. Macrophages migrated towards flea bite sites and interacted with small numbers of flea-transmitted bacteria. Consistent with a previous study, we observed minimal interaction between Y. pestis and dendritic cells; however, dendritic cells did consistently migrate towards flea bite sites containing Y. pestis. Interestingly, we often recovered viable Y. pestis from the draining lymph node (dLN) 1 h after flea feeding, indicating that the migration of bacteria from the dermis to the dLN may be more rapid than previously reported. Overall, the innate cellular host responses to flea-transmitted Y. pestis differed from and were more variable than responses to needle-inoculated bacteria. This work highlights the importance of studying the interactions between fleas, Y. pestis and the mammalian host to gain a better understanding of the early events in plague pathogenesis.


Assuntos
Células Dendríticas/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Peste/imunologia , Pele/imunologia , Animais , Modelos Animais de Doenças , Insetos Vetores , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/imunologia , Peste/transmissão , Sifonápteros/microbiologia , Yersinia pestis/imunologia
10.
J Leukoc Biol ; 95(3): 389-98, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24227798

RESUMO

Yersinia pestis, the bacterial agent of plague, is transmitted by fleas. The bite of an infected flea deposits Y. pestis into the dermis and triggers recruitment of innate immune cells, including phagocytic PMNs. Y. pestis can subvert this PMN response and survive at the flea-bite site, disseminate, and persist in the host. Although its genome encodes a number of antiphagocytic virulence factors, phagocytosis of Y. pestis by PMNs has been observed. This study tests the hypotheses that Y. pestis, grown at the ambient temperature of the flea vector (21°C), where the major antiphagocytic virulence factors are not produced, can survive and replicate within human PMNs and can use PMNs as a route to infect macrophages subsequently. We show that Y. pestis is localized within PMN phagosomes, predominately as individual bacteria, and that intracellular bacteria can survive and replicate. Within 12 h of infection, ~70% of infected PMNs had PS on their surface and were plausibly competent for efferocytosis. With the use of live cell confocal imaging, we show that autologous HMDMs recognize and internalize infected PMNs and that Y. pestis survives and replicates within these HMDMs following efferocytosis. Addition of HMDMs to infected PMNs resulted in decreased secretion of inflammatory cytokines (compared with HMDMs incubated directly with pCD1(-) Y. pestis) and increased secretion of the anti-inflammatory cytokine IL-1ra. Thus, Y. pestis can survive and replicate within PMNs, and infected PMNs may be a route for noninflammatory infection of macrophages.


Assuntos
Macrófagos/microbiologia , Neutrófilos/microbiologia , Fagossomos/microbiologia , Peste/microbiologia , Yersinia pestis/patogenicidade , Humanos , Macrófagos/imunologia , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Neutrófilos/imunologia , Fagossomos/imunologia , Virulência , Yersinia pestis/imunologia
11.
mBio ; 4(5): e00170-13, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23982068

RESUMO

UNLABELLED: The majority of human Yersinia pestis infections result from introduction of bacteria into the skin by the bite of an infected flea. Once in the dermis, Y. pestis can evade the host's innate immune response and subsequently disseminate to the draining lymph node (dLN). There, the pathogen replicates to large numbers, causing the pathognomonic bubo of bubonic plague. In this study, several cytometric and microscopic techniques were used to characterize the early host response to intradermal (i.d.) Y. pestis infection. Mice were infected i.d. with fully virulent or attenuated strains of dsRed-expressing Y. pestis, and tissues were analyzed by flow cytometry. By 4 h postinfection, there were large numbers of neutrophils in the infected dermis and the majority of cell-associated bacteria were associated with neutrophils. We observed a significant effect of the virulence plasmid (pCD1) on bacterial survival and neutrophil activation in the dermis. Intravital microscopy of i.d. Y. pestis infection revealed dynamic interactions between recruited neutrophils and bacteria. In contrast, very few bacteria interacted with dendritic cells (DCs), indicating that this cell type may not play a major role early in Y. pestis infection. Experiments using neutrophil depletion and a CCR7 knockout mouse suggest that dissemination of Y. pestis from the dermis to the dLN is not dependent on neutrophils or DCs. Taken together, the results of this study show a very rapid, robust neutrophil response to Y. pestis in the dermis and that the virulence plasmid pCD1 is important for the evasion of this response. IMPORTANCE: Yersinia pestis remains a public health concern today because of sporadic plague outbreaks that occur throughout the world and the potential for its illegitimate use as a bioterrorism weapon. Since bubonic plague pathogenesis is initiated by the introduction of Y. pestis into the skin, we sought to characterize the response of the host's innate immune cells to bacteria early after intradermal infection. We found that neutrophils, innate immune cells that engulf and destroy microbes, are rapidly recruited to the injection site, irrespective of strain virulence, indicating that Y. pestis is unable to subvert neutrophil recruitment to the site of infection. However, we saw a decreased activation of neutrophils that were associated with Y. pestis strains harboring the pCD1 plasmid, which is essential for virulence. These findings indicate a role for pCD1-encoded factors in suppressing the activation/stimulation of these cells in vivo.


Assuntos
Neutrófilos/imunologia , Peste/imunologia , Peste/microbiologia , Pele/imunologia , Yersinia pestis/imunologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Evasão da Resposta Imune , Camundongos , Camundongos Endogâmicos C57BL , Pele/microbiologia , Yersinia pestis/fisiologia
12.
Infect Immun ; 78(8): 3465-74, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20515926

RESUMO

Coxiella burnetii infects mononuclear phagocytes, where it directs biogenesis of a vacuolar niche termed the parasitophorous vacuole (PV). Owing to its lumenal pH (approximately 5) and fusion with endolysosomal vesicles, the PV is considered phagolysosome-like. However, the degradative properties of the mature PV are unknown, and there are conflicting reports on the maturation state and growth permissiveness of PV harboring virulent phase I or avirulent phase II C. burnetii variants in human mononuclear phagocytes. Here, we employed infection of primary human monocyte-derived macrophages (HMDMs) and THP-1 cells as host cells to directly compare the PV maturation kinetics and pathogen growth in cells infected with the Nine Mile phase I variant (NMI) or phase II variant (NMII) of C. burnetii. In both cell types, phase variants replicated with similar kinetics, achieving roughly 2 to 3 log units of growth before they reached stationary phase. HMDMs infected by either phase variant secreted similar amounts of the proinflammatory cytokines interleukin-6 and tumor necrosis factor alpha. In infected THP-1 cells, equal percentages of NMI and NMII PVs decorate with the early endosomal marker Rab5, the late endosomal/lysosomal markers Rab7 and CD63, and the lysosomal marker cathepsin D at early (8 h) and late (72 h) time points postinfection (p.i.). Mature PVs (2 to 4 days p.i.) harboring NMI or NMII contained proteolytically active cathepsins and quickly degraded Escherichia coli. These data suggest that C. burnetii does not actively inhibit phagolysosome function as a survival mechanism. Instead, NMI and NMII resist degradation to replicate in indistinguishable digestive PVs that fully mature through the endolysosomal pathway.


Assuntos
Coxiella burnetii/patogenicidade , Macrófagos/microbiologia , Fagossomos/microbiologia , Catepsinas/metabolismo , Células Cultivadas , Coxiella burnetii/imunologia , Escherichia coli/imunologia , Humanos , Interleucina-6/metabolismo , Macrófagos/imunologia , Fagossomos/imunologia , Fator de Necrose Tumoral alfa/metabolismo
13.
BMC Immunol ; 10: 26, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19426498

RESUMO

BACKGROUND: The obligate intracellular bacterial pathogen Coxiella burnetii causes the zoonosis Q fever. The intracellular niche of C. burnetii has led to the assumption that cell-mediated immunity is the most important immune component for protection against this pathogen. However, passive immunization with immune serum can protect naïve animals from challenge with virulent C. burnetii, indicating a role for antibody (Ab) in protection. The mechanism of this Ab-mediated protection is unknown. Therefore, we conducted a study to determine whether Fc receptors (FcR) or complement contribute to Ab-mediated immunity (AMI) to C. burnetii. RESULTS: Virulent C. burnetii infects and replicates within human dendritic cells (DC) without inducing their maturation or activation. We investigated the effects of Ab opsonized C. burnetii on human monocyte-derived and murine bone marrow-derived DC. Infection of DC with Ab-opsonized C. burnetii resulted in increased expression of maturation markers and inflammatory cytokine production. Bacteria that had been incubated with naïve serum had minimal effect on DC, similar to virulent C. burnetii alone. The effect of Ab opsonized C. burnetii on DC was FcR dependent as evidenced by a reduced response of DC from FcR knockout (FcR k/o) compared to C57Bl/6 (B6) mice. To address the potential role of FcR in Ab-mediated protection in vivo, we compared the response of passively immunized FcR k/o mice to the B6 controls. Interestingly, we found that FcR are not essential for AMI to C. burnetii in vivo. We subsequently examined the role of complement in AMI by passively immunizing and challenging several different strains of complement-deficient mice and found that AMI to C. burnetii is also complement-independent. CONCLUSION: Despite our data showing FcR-dependent stimulation of DC in vitro, Ab-mediated immunity to C. burnetii in vivo is FcR-independent. We also found that passive immunity to this pathogen is independent of complement.


Assuntos
Proteínas do Sistema Complemento/metabolismo , Coxiella burnetii/imunologia , Células Dendríticas/metabolismo , Imunoglobulina G/metabolismo , Receptores Fc/metabolismo , Animais , Citotoxicidade Celular Dependente de Anticorpos , Complexo Antígeno-Anticorpo/imunologia , Complexo Antígeno-Anticorpo/metabolismo , Antígenos de Bactérias/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Ativação do Complemento/genética , Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/genética , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Células Dendríticas/patologia , Imunização Passiva , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Febre Q/imunologia , Receptores Fc/genética
14.
Immunol Res ; 43(1-3): 138-48, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18813881

RESUMO

Coxiella burnetii is an obligate intracellular bacterial pathogen that causes the zoonosis Q fever. While an effective whole-cell vaccine (WCV) against Q fever exists, the vaccine has limitations in being highly reactogenic in sensitized individuals. Thus, a safe and effective vaccine based on recombinant protein antigen (Ag) is desirable. To achieve this goal, a better understanding of the host response to primary infection and the precise mechanisms involved in protective immunity to C. burnetii are needed. This review summarizes our current understanding of adaptive immunity to C. burnetii with a focus on recent developments in the field.


Assuntos
Formação de Anticorpos , Vacinas Bacterianas/imunologia , Coxiella burnetii/imunologia , Imunidade Celular , Febre Q/imunologia , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Humanos , Imunidade Ativa , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Fagocitose/imunologia , Febre Q/microbiologia
15.
Methods Mol Biol ; 431: 189-200, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18287757

RESUMO

Coxiella burnetii, the agent of Q fever, is an obligate intracellular bacterium that has a tropism for cells of the mononuclear phagocyte system. Following internalization, C. burnetii remains in a phagosome that ultimately matures into a vacuole with lysosomal characteristics that supports pathogen replication. Most in vitro investigations of Coxiella - macrophage interactions have employed continuous cell lines. Although these studies have been informative, genetic alterations of immortalized cells may result in attenuated biological responses to infection relative to primary cells. Consequently, primary macrophages are preferred as in vitro model systems. Here, we describe procedures for propagation and isolation of C. burnetii from cell culture and the use of these preparations to infect primary macrophages derived from human peripheral blood monocytes. Both virulent phase I and avirulent phase II C. burnetii productively infect human monocyte-derived macrophages (MDMs) and replicate with approximately the same kinetics, thereby providing a more physiologically relevant in vitro model system to study the infectious process of this pathogen.


Assuntos
Coxiella burnetii/crescimento & desenvolvimento , Macrófagos/microbiologia , Monócitos/citologia , Animais , Células Cultivadas , Chlorocebus aethiops , Humanos , Macrófagos/citologia , Fagossomos/microbiologia , Reação em Cadeia da Polimerase , Febre Q/microbiologia , Células Vero
16.
Cell Microbiol ; 9(9): 2289-98, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17501981

RESUMO

Chlamydia trachomatis and C. muridarum, human and mouse pathogens, respectively, share more than 99% of open reading frames (ORFs) but differ in a cytotoxin locus. Presence or absence of cytotoxin gene(s) in these strains correlates with their ability to grow in IFN-gamma treated mouse cells. Growth of toxin-positive C. muridarum is not affected in IFN-gamma treated cells, whereas growth of toxin-negative C. trachomatis is inhibited. We previously reported that this difference in IFN-gamma sensitivity is important to the in vivo infection tropism of these pathogens. Here we describe a phenotypic rescue assay that utilizes C. muridarum gamma irradiated killed elementary bodies (iEB) to rescue C. trachomatis infectivity in IFN-gamma treated mouse cells. Rescue by iEB was temporal, maximal early post infection, directly related to multiplicity of iEB infection, and was independent of de novo chlamydial transcription. Lastly, C. muridarum iEB vacuoles and C. trachomatis inclusions were not fusogenic, suggesting the factor(s) responsible for rescue was secreted or exposed to the cytosol where it inactivated IFN-gamma induced effectors. Chlamydial phenotypic rescue may have broader utility for the study of other EB associated virulence factors that function early in the interaction of chlamydiae with host cells.


Assuntos
Chlamydia muridarum/fisiologia , Chlamydia trachomatis/fisiologia , Interferon gama/metabolismo , Animais , Chlamydia muridarum/citologia , Chlamydia muridarum/genética , Chlamydia muridarum/efeitos da radiação , Chlamydia trachomatis/citologia , Chlamydia trachomatis/genética , Raios gama , Genoma Bacteriano , Células HeLa , Humanos , Camundongos , Fenótipo , Vacúolos/metabolismo
17.
Mol Microbiol ; 63(2): 379-90, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17163980

RESUMO

Burkholderia mallei, the aetiologic agent of glanders, causes a variety of illnesses in animals and humans ranging from occult infections to acute fulminating septicaemias. To better understand the role of lipopolysaccharide (LPS) in the pathogenesis of these diseases, studies were initiated to characterize the structural and biological properties of lipid A moieties expressed by this organism. Using a combination of chemical analyses and MALDI-TOF mass spectrometry, B. mallei was shown to express a heterogeneous mixture of tetra- and penta-acylated lipid A species that were non-stoichiometrically substituted with 4-amino-4-deoxy-arabinose residues. The major penta-acylated species consisted of bisphosphorylated d-glucosamine disaccharide backbones possessing two amide linked 3-hydroxyhexadecanoic acids, two ester linked 3-hydroxytetradecanoic acids [C14:0(3-OH)] and an acyloxyacyl linked tetradecanoic acid, whereas, the major tetra-acylated species possessed all but the 3'-linked C14:0(3-OH) residues. In addition, although devoid of hexa-acylated species, B. mallei LPS was shown to be a potent activator of human Toll-like receptor 4 complexes and stimulated human macrophage-like cells (THP-1 and U-937), monocyte-derived macrophages and dendritic cells to produce high levels of TNF-alpha, IL-6 and RANTES. Based upon these results, it appears that B. mallei LPS is likely to play a significant role in the pathogenesis of human disease.


Assuntos
Burkholderia mallei/imunologia , Lipopolissacarídeos/imunologia , Receptor 4 Toll-Like/imunologia , Burkholderia mallei/química , Burkholderia mallei/metabolismo , Linhagem Celular , Quimiocina CCL5/biossíntese , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Eletroforese em Gel de Poliacrilamida , Humanos , Interleucina-6/biossíntese , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/química , Macrófagos/imunologia , Macrófagos/microbiologia , Espectrometria de Massas , Monócitos/imunologia , Monócitos/microbiologia , Fator de Necrose Tumoral alfa/biossíntese
18.
J Virol ; 79(20): 12828-39, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16188985

RESUMO

The tick-borne encephalitis (TBE) complex of viruses, genus Flavivirus, can cause severe encephalitis, meningitis, and/or hemorrhagic fevers. Effective interferon (IFN) responses are critical to recovery from infection with flaviviruses, and the mosquito-borne flaviviruses can inhibit this response. However, little is known about interactions between IFN signaling and TBE viruses. Langat virus (LGTV), a member of the TBE complex of viruses, was found to be highly sensitive to the antiviral effects of IFN. However, LGTV infection inhibited IFN-induced expression of a reporter gene driven by either IFN-alpha/beta- or IFN-gamma-responsive promoters. This indicated that LGTV can inhibit the IFN-mediated JAK-STAT (Janus kinase-signal transducer and activator of transcription) pathway of signal transduction. The mechanism of inhibition was due to blocks in the phosphorylation of both Janus kinases, Jak1 and Tyk2, during IFN-alpha signaling and at least a failure of Jak1 phosphorylation following IFN-gamma stimulation. To determine the viral protein(s) responsible, we individually expressed all nonstructural (NS) proteins and examined their ability to inhibit signal transduction. Expression of NS5 alone inhibited STAT1 phosphorylation in response to IFN, thus identifying NS5 as a potential IFN antagonist. Examination of interactions between NS5 and cellular proteins revealed that NS5 associated with IFN-alpha/beta and -gamma receptor complexes. Importantly, inhibition of JAK-STAT signaling and NS5-IFN receptor interactions were demonstrated in LGTV-infected human monocyte-derived dendritic cells, important target cells for early virus replication. Because NS5 may interfere with both innate and acquired immune responses to virus infection, this protein may have a significant role in viral pathogenesis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Interferons/antagonistas & inibidores , Metiltransferases/farmacologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Proteínas não Estruturais Virais/farmacologia , Animais , Células Cultivadas , Chlorocebus aethiops , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Regulação para Baixo , Vírus da Encefalite Transmitidos por Carrapatos/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Humanos , Interferon-alfa/antagonistas & inibidores , Interferon-alfa/metabolismo , Interferon beta/antagonistas & inibidores , Interferon beta/metabolismo , Interferon gama/antagonistas & inibidores , Interferon gama/metabolismo , Interferons/metabolismo , Janus Quinase 1 , Metiltransferases/metabolismo , Fosforilação , Receptores de Interferon/metabolismo , Fator de Transcrição STAT1 , Fator de Transcrição STAT2 , Células Vero , Proteínas não Estruturais Virais/metabolismo , Virulência , Replicação Viral/fisiologia
19.
Infect Immun ; 73(8): 4494-504, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16040960

RESUMO

Legionella pneumophila and Coxiella burnetii are phylogenetically related intracellular bacteria that cause aerosol-transmitted lung infections. In host cells both pathogens proliferate in vacuoles whose biogenesis displays some common features. To test the functional similarity of their respective intracellular niches, African green monkey kidney epithelial (Vero) cells, A/J mouse bone marrow-derived macrophages, human macrophages, and human dendritic cells (DC) containing mature C. burnetii replication vacuoles were superinfected with L. pneumophila, and then the acidity, lysosome-associated membrane protein (LAMP) content, and cohabitation of mature replication vacuoles was assessed. In all cell types, wild-type L. pneumophila occupied distinct vacuoles in close association with acidic, LAMP-positive C. burnetii replication vacuoles. In murine macrophages, but not primate macrophages, DC, or epithelial cells, L. pneumophila replication vacuoles were acidic and LAMP positive. Unlike wild-type L. pneumophila, type IV secretion-deficient dotA mutants trafficked to lysosome-like C. burnetii vacuoles in Vero cells where they survived but failed to replicate. In primate macrophages, DC, or epithelial cells, growth of L. pneumophila was as robust in superinfected cell cultures as in those singly infected. Thus, despite their noted similarities, L. pneumophila and C. burnetii are exquisitely adapted for replication in unique replication vacuoles, and factors that maintain the C. burnetii replication vacuole do not alter biogenesis of an adjacent L. pneumophila replication vacuole. Moreover, L. pneumophila can replicate efficiently in either lysosomal vacuoles of A/J mouse cells or in nonlysosomal vacuoles of primate cells.


Assuntos
Coxiella burnetii/metabolismo , Legionella pneumophila/metabolismo , Doença dos Legionários/microbiologia , Vacúolos/microbiologia , Animais , Antígenos de Bactérias , Proliferação de Células , Chlorocebus aethiops , Coxiella burnetii/patogenicidade , Células Dendríticas/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Legionella pneumophila/patogenicidade , Macrófagos/microbiologia , Camundongos , Febre Q/microbiologia , Células Vero , Virulência
20.
Proc Natl Acad Sci U S A ; 102(24): 8722-7, 2005 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-15939879

RESUMO

Coxiella burnetii is an obligate intracellular bacterium and the etiological agent of the zoonotic disease Q fever. Acute human Q fever is characterized by flu-like symptoms that, in some cases, can result in a persistent infection that may reactivate months or years after initial exposure. Mechanisms by which this obligate parasite evades clearance by the host immune response during persistent infection are unknown. Here, we characterized the interaction of C. burnetii with dendritic cells (DC), critical components of both innate and adaptive immunity. Human DC were infected with two isogenic C. burnetii strains that differ in LPS length. Infection by the Nine Mile phase I (NMI) strain, which is fully virulent and produces full-length LPS, did not result in DC maturation. In contrast, infection by the avirulent Nine Mile phase II strain, producing a severely truncated LPS, resulted in toll-like receptor 4-independent DC maturation and approximately 10-fold more IL-12 and TNF production. NMI did not actively inhibit DC maturation as NMI-infected DC subsequently matured if treated with Escherichia coli LPS or Nine Mile phase II. Furthermore, removal of LPS from NMI dramatically increased its ability to stimulate DC. We propose a model whereby LPS of virulent C. burnetii masks toll-like receptor ligands from innate immune recognition by DC, thereby allowing replication without significant maturation or inflammatory cytokine production. This immune evasion strategy may allow C. burnetii to persist in an immunocompetent host.


Assuntos
Coxiella burnetii/patogenicidade , Células Dendríticas/imunologia , Lipopolissacarídeos/biossíntese , Modelos Biológicos , Febre Q/imunologia , Coxiella burnetii/genética , Coxiella burnetii/metabolismo , Primers do DNA , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Immunoblotting , Interleucina-12/metabolismo , Lipopolissacarídeos/imunologia , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Subunidades Proteicas/metabolismo , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Receptor 4 Toll-Like , Receptores Toll-Like , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...